Monday 27 November 2017

Bewegende Gemiddelde Seisoensveranderinge


Bewegende gemiddeldes As hierdie inligting is geplot op 'n grafiek, dit lyk soos volg: Dit dui aan dat daar 'n wye variasie in die aantal besoekers na gelang van die seisoen. Daar is veel minder in die herfs en winter as die lente en somer. Maar, as ons wou 'n tendens in die aantal besoekers te sien, ons kan 'n 4-punt bewegende gemiddelde te bereken. Ons doen dit deur die vind van die gemiddelde aantal besoekers in die vier hoeke van 2005: Dan vind ons die gemiddelde aantal besoekers in die laaste drie kwartale van 2005 en die eerste kwartaal van 2006: Toe die laaste twee kwartale van 2005 en die eerste twee kwartale 2006: Let daarop dat die laaste gemiddelde ons kan vind is vir die laaste twee kwartale van 2006 en die eerste twee kwartale van 2007. ons plot die bewegende gemiddeldes op 'n grafiek, om seker te maak dat elke gemiddelde is geplot in die middel van die vier kwartale dit dek: Ons kan nou sien dat daar 'n baie effense afwaartse neiging in visitors. Spreadsheet implementering van seisoenale aanpassing en eksponensiële gladstryking dit is maklik om seisoenale aanpassing voer en pas eksponensiële gladstryking modelle met behulp van Excel. Die skerm beelde en kaarte hieronder is geneem uit 'n sigblad wat is opgestel om multiplikatiewe seisoenale aanpassing en lineêre eksponensiële gladstryking op die volgende kwartaallikse verkope data van Buitenboord Marine illustreer: Om 'n afskrif van die sigbladlêer self te bekom, kliek hier. Die weergawe van lineêre eksponensiële gladstryking wat hier gebruik sal word vir doeleindes van demonstrasie is Brown8217s weergawe, bloot omdat dit geïmplementeer kan word met 'n enkele kolom van formules en daar is net een glad konstante te optimaliseer. Gewoonlik is dit beter om Holt8217s weergawe dat afsonderlike glad konstantes vir vlak en tendens het gebruik. Die vooruitskatting proses verloop soos volg: (i) die eerste keer die data is seisoenaal-aangepaste (ii) dan voorspellings gegenereer vir die seisoenaal-aangepaste data via lineêre eksponensiële gladstryking en (iii) Ten slotte het die seisoensaangesuiwerde voorspellings is quotreseasonalizedquot om voorspellings vir die oorspronklike reeks te verkry . Die aanpassingsproses seisoenale word in kolomme gedoen D deur G. Die eerste stap in seisoenale aanpassing is om te bereken 'n gesentreerde bewegende gemiddelde (hier opgevoer in kolom D). Dit kan gedoen word deur die gemiddelde van twee een-jaar-wye gemiddeldes wat geneutraliseer deur 'n tydperk relatief tot mekaar. ( 'N kombinasie van twee geneutraliseer gemiddeldes eerder as 'n enkele gemiddelde nodig vir sentrering doeleindes wanneer die aantal seisoene is selfs.) Die volgende stap is om die verhouding te bereken om bewegende gemiddelde --i. e. die oorspronklike data gedeel deur die bewegende gemiddelde in elke tydperk - wat hier uitgevoer word in kolom E. (Dit is ook die quottrend-cyclequot komponent van die patroon genoem, sover tendens en besigheid-siklus effekte kan oorweeg word om almal wat bly nadat gemiddeld meer as 'n geheel jaar se data. natuurlik, maand-tot-maand veranderinge wat nie as gevolg van seisoenale kan bepaal word deur baie ander faktore, maar die 12-maande-gemiddelde glad oor hulle 'n groot mate.) die na raming seisoenale indeks vir elke seisoen word bereken deur die eerste gemiddeld al die verhoudings vir daardie spesifieke seisoen, wat gedoen word in selle G3-G6 behulp van 'n AVERAGEIF formule. Die gemiddelde verhoudings word dan verklein sodat hulle som presies 100 keer die aantal periodes in 'n seisoen, of 400 in hierdie geval, wat gedoen word in selle H3-H6. Onder in kolom F, word VLOOKUP formules wat gebruik word om die toepaslike seisoenale indeks waarde in elke ry van die datatabel voeg, volgens die kwartaal van die jaar wat dit verteenwoordig. Die gesentreerde bewegende gemiddelde en die seisoensaangepaste data beland lyk soos hierdie: Let daarop dat die bewegende gemiddelde lyk tipies soos 'n gladder weergawe van die seisoensaangepaste reeks, en dit is korter aan beide kante. Nog 'n werkblad in dieselfde Excel lêer toon die toepassing van die lineêre eksponensiële gladstryking model om die seisoensaangepaste data, begin in kolom G. 'n Waarde vir die glad konstante (alfa) bo die voorspelling kolom ingeskryf (hier, in sel H9) en vir gerief dit die omvang naam quotAlpha. quot (die naam is opgedra deur die opdrag quotInsert / naam / Createquot.) die LES model is geïnisialiseer deur die oprigting van die eerste twee voorspellings gelyk aan die eerste werklike waarde van die seisoensaangepaste reeks toegeken. Die formule wat hier gebruik word vir die LES voorspelling is die enkel-vergelyking rekursiewe vorm van Brown8217s model: Hierdie formule is in die sel wat ooreenstem met die derde tydperk (hier, sel H15) aangegaan en kopieer af van daar af. Let daarop dat die LES voorspelling vir die huidige tydperk verwys na die twee voorafgaande waarnemings en die twee voorafgaande voorspelling foute, sowel as om die waarde van alfa. So, die voorspelling formule in ry 15 slegs verwys na data wat beskikbaar is in ry 14 en vroeër was. (Natuurlik, as ons wou eenvoudig in plaas van lineêre eksponensiële gladstryking te gebruik, kan ons die SES formule hier vervang in plaas. Ons kan ook gebruik Holt8217s eerder as Brown8217s LES model, wat nog twee kolomme van formules sou vereis dat die vlak en tendens bereken wat gebruik word in die vooruitsig.) die foute word bereken in die volgende kolom (hier, kolom J) deur die aftrekking van die voorspellings van die werklike waardes. Die wortel beteken kwadraat fout is bereken as die vierkantswortel van die variansie van die foute plus die vierkant van die gemiddelde. (Dit volg uit die wiskundige identiteit. MSE afwyking (foute) (gemiddeld (foute)) 2) By die berekening van die gemiddelde en variansie van die foute in hierdie formule, is die eerste twee periodes uitgesluit omdat die model vooruitskatting nie eintlik nie begin totdat die derde tydperk (ry 15 op die sigblad). Die optimale waarde van alfa kan óf gevind word deur die hand verander alfa tot die minimum RMSE is gevind, of anders kan jy die quotSolverquot gebruik om 'n presiese minimering. Die waarde van alfa dat die Solver gevind word hier (alpha0.471) getoon. Dit is gewoonlik 'n goeie idee om die foute van die model (in omskep eenhede) te plot en ook om te bereken en stip hul outokorrelasies by lags van tot een seisoen. Hier is 'n tydreeks plot van die (seisoenaangepaste) foute: Die fout outokorrelasies word bereken deur gebruik te maak van die funksie CORREL () om die korrelasies van die foute te bereken met hulself uitgestel word deur een of meer periodes - besonderhede word in die sigblad model . Hier is 'n plot van die outokorrelasies van die foute by die eerste vyf lags: Die outokorrelasies by lags 1 tot 3 is baie naby aan nul, maar die pen op lag 4 (wie se waarde is 0.35) is 'n bietjie lastig - dit dui daarop dat die seisoenale aanpassing proses het nie heeltemal suksesvol. Maar dit is eintlik net effens betekenisvol. 95 betekenis bands om te toets of outokorrelasies is aansienlik verskil van nul is min of meer plus-of-minus 2 / SQRT (N-k), waar n die steekproefgrootte en k is die lag. Hier N 38 en k wissel van 1 tot 5, so die vierkant-wortel-van-n-minus-k is ongeveer 6 vir almal, en vandaar die perke vir die toets van die statistiese betekenisvolheid van afwykings van nul is min of meer plus - of-minus 2/6, of 0.33. As jy die waarde van alfa wissel met die hand in hierdie Excel model, kan jy die effek op die tydreeks en outokorrelasie erwe van die foute in ag te neem, sowel as op die wortel-gemiddelde-kwadraat fout, wat onder sal wees geïllustreer. Aan die onderkant van die sigblad, is die voorspelling formule quotbootstrappedquot in die toekoms deur bloot vervang voorspellings vir werklike waardes by die punt waar die werklike data loop uit - d. w.z. waar quotthe futurequot begin. (Met ander woorde, in elke sel waar 'n toekomstige datawaarde sou plaasvind, 'n selverwysing is ingevoeg wat daarop dui dat die voorspelling gemaak vir daardie tydperk.) Al die ander formules is eenvoudig van bo af gekopieer: Let daarop dat die foute vir voorspellings van die toekoms is al bereken as nul. Dit beteken nie dat die werklike foute sal nul wees nie, maar eerder dit weerspieël bloot die feit dat vir doeleindes van voorspelling is ons veronderstelling dat die toekoms data die voorspellings sal gelyk gemiddeld. Die gevolglike LES voorspellings vir die seisoenaal-aangepaste data soos volg lyk: Met hierdie besondere waarde van Alpha, wat is optimaal vir een-periode-vooruit voorspellings, die geprojekteerde tendens is effens opwaarts, wat die plaaslike tendens wat oor die afgelope 2 jaar is waargeneem of so. Vir ander waardes van Alpha dalk 'n heel ander tendens projeksie verkry. Dit is gewoonlik 'n goeie idee om te sien wat gebeur met die langtermyn-tendens projeksie wanneer Alpha is uiteenlopend, omdat die waarde wat die beste vir 'n kort termyn vooruitskatting sal nie noodwendig die beste waarde vir die voorspelling van die meer verre toekoms wees. Byvoorbeeld, hier is die resultaat wat verkry word indien die waarde van alfa hand is ingestel op 0,25: Die geprojekteerde langtermyn-tendens is nou negatiewe eerder as positiewe Met 'n kleiner waarde van Alpha model plaas meer gewig op ouer data in sy skatting van die huidige vlak en tendens, en sy voorspellings langtermyn weerspieël die afwaartse neiging waargeneem oor die afgelope 5 jaar, eerder as die meer onlangse opwaartse neiging. Hierdie grafiek ook duidelik illustreer hoe die model met 'n kleiner waarde van Alpha is stadiger te reageer op quotturning pointsquot in die data en dus geneig is om 'n fout van die dieselfde teken maak vir baie tye in 'n ry. Die 1-stap-ahead voorspelling foute is groter gemiddeld as dié verkry voordat (RMSE van 34,4 eerder as 27.4) en sterk positief autocorrelated. Die lag-1 outokorrelasie van 0,56 oorskry grootliks die waarde van 0.33 hierbo bereken vir 'n statisties beduidende afwyking van nul. As 'n alternatief vir slingerspoed die waarde van alfa ten einde meer konserwatisme te voer in 'n lang termyn voorspellings, is 'n quottrend dampeningquot faktor soms by die model ten einde te maak die geprojekteerde tendens plat uit na 'n paar periodes. Die finale stap in die bou van die voorspelling model is om die LES voorspellings quotreasonalizequot deur hulle deur die toepaslike seisoenale indekse te vermenigvuldig. So, die reseasonalized voorspellings in kolom Ek is net die produk van die seisoenale indekse in kolom F en die seisoensaangepaste LES voorspellings in kolom H. Dit is relatief maklik om vertrouensintervalle bereken vir een-stap-ahead voorspellings gemaak deur hierdie model: eerste bereken die RMSE (wortel-gemiddelde-kwadraat fout, wat net die vierkantswortel van die MSE) en dan bereken 'n vertrouensinterval vir die seisoensaangepaste voorspel deur optelling en aftrekking twee keer die RMSE. (Oor die algemeen 'n 95 vertrouensinterval vir 'n een-tydperk lig voorspelling is min of meer gelyk aan die punt voorspelling plus-of-minus twee keer die geskatte standaardafwyking van die voorspelling foute, die aanvaarding van die fout verspreiding is ongeveer normale en die steekproefgrootte groot genoeg is, sê, 20 of meer. Hier is die RMSE eerder as die monster standaardafwyking van die foute is die beste raming van die standaard afwyking van toekomstige vooruitsig foute, want dit neem vooroordeel sowel toevallige variasies in ag.) die vertroue perke vir die seisoensaangepaste voorspelling is dan reseasonalized. saam met die voorspelling, deur hulle met die toepaslike seisoenale indekse te vermenigvuldig. In hierdie geval is die RMSE is gelyk aan 27.4 en die seisoensaangepaste voorspelling vir die eerste toekoms tydperk (Desember-93) is 273,2. sodat die seisoensaangepaste 95 vertrouensinterval is 273,2-227,4 218,4 te 273.2227.4 328,0. Vermenigvuldig hierdie perke deur Decembers seisoenale indeks van 68,61. Ons kry onderste en boonste vertroue grense van 149,8 en 225,0 rondom die Desember-93 punt voorspelling van 187,4. Vertroue perke vir voorspellings meer as een tydperk wat voorlê, sal oor die algemeen uit te brei as die voorspelling horison toeneem, as gevolg van onsekerheid oor die vlak en tendens asook die seisoenale faktore, maar dit is moeilik om hulle te bereken in die algemeen deur analitiese metodes. (Die geskikte manier om vertroue perke vir die LES voorspelling bereken is deur die gebruik van ARIMA teorie, maar die onsekerheid in die seisoenale indekse is 'n ander saak.) As jy 'n realistiese vertroue interval vir 'n voorspelling wil meer as een tydperk wat voorlê, met al die bronne van fout in ag, jou beste bet is om empiriese metodes gebruik: byvoorbeeld, 'n vertrouensinterval vir 'n 2-stap vorentoe voorspel verkry, jy kan 'n ander kolom skep op die sigblad om 'n 2-stap-ahead voorspelling bereken vir elke tydperk ( deur Opstarten die een-stap-ahead voorspelling). bereken dan die RMSE van die 2-stap-ahead voorspelling foute en gebruik dit as die basis vir 'n 2-stap-ahead vertroue interval.6.2 bewegende gemiddeldes ma 40 elecsales, sodat 5 41 In die tweede kolom van hierdie tabel, 'n bewegende gemiddelde van orde 5 aangetoon, die verskaffing van 'n skatting van die tendens-siklus. Die eerste waarde in hierdie kolom is die gemiddeld van die eerste vyf Waarnemings (1989-1993) die tweede waarde in die 5-MA kolom is die gemiddeld van die waardes 1990-1994 en so aan. Elke waarde in die 5-MA kolom is die gemiddeld van die waarnemings in die tydperk van vyf jaar gesentreer op die ooreenstemmende jaar. Daar is geen waardes vir die eerste twee jaar of laaste twee jaar, want ons hoef nie twee waarnemings aan weerskante. In die formule hierbo, kolom 5-MA bevat die waardes van hoed met K2. Om te sien wat die tendens-siklus skatting lyk, stip ons dit saam met die oorspronklike data in figuur 6.7. plot 40 elecsales, hoof quotResidential elektrisiteit salesquot, ylab quotGWhquot. XLab quotYearquot 41 lyne 40 MA 40 elecsales, 5 41. Kol quotredquot 41 Let op hoe die tendens (in rooi) is gladder as die oorspronklike data en vang die grootste beweging van die tydreeks sonder al die geringe fluktuasies. Die bewegende gemiddelde metode nie skattings van T toelaat waar t is baie naby aan die einde van die reeks vandaar die rooi lyn nie uit te brei na die kante van die grafiek aan weerskante. Later sal ons meer gesofistikeerde metodes van die tendens-siklus skatting wat doen toelaat skattings naby die eindpunte gebruik. Die einde van die bewegende gemiddelde bepaal die gladheid van die tendens-siklus skatting. In die algemeen, 'n groter orde beteken 'n gladder kurwe. Die volgende grafiek toon die effek van die verandering van die orde van die bewegende gemiddelde vir die residensiële verkope elektrisiteit data. Eenvoudige bewegende gemiddeldes soos hierdie is gewoonlik van vreemde orde (bv 3, 5, 7, ens) Dit is sodat hulle is simmetries: in 'n bewegende gemiddelde van orde m2k1, daar is k vroeër waarnemings, k later waarnemings en die Midde-waarneming wat gemiddeld. Maar as m selfs was, sou dit nie meer simmetriese wees. Bewegende gemiddeldes van bewegende gemiddeldes Dit is moontlik om 'n bewegende gemiddelde van toepassing op 'n bewegende gemiddelde. Een van die redes hiervoor is om 'n nog-orde bewegende gemiddelde simmetriese maak. Byvoorbeeld, kan ons 'n bewegende gemiddelde van orde 4 neem, en dan nog 'n bewegende gemiddelde van orde 2 van toepassing is op die resultate. In Tabel 6.2, is dit gedoen en vir die eerste paar jaar van die Australiese kwartaallikse bier produksie data. BEER2 LT venster 40 ausbeer, begin 1992 41 ma4 LT ma 40 BEER2, sodat 4. sentrum ONWAAR 41 ma2x4 LT ma 40 BEER2, sodat 4. sentrum WAAR 41 Die notasie 2times4-MA in die laaste kolom beteken 'n 4-MA gevolg deur 'n 2-MA. Die waardes in die laaste kolom word verkry deur die neem van 'n bewegende gemiddelde van orde 2 van die waardes in die vorige kolom. Byvoorbeeld, die eerste twee waardes in die 4-MA kolom is 451,2 (443.410.420.532) / 4 en 448,8 (410.420.532.433) / 4. Die eerste waarde in die 2times4-MA kolom is die gemiddeld van die twee: 450,0 (451.2448.8) / 2. Wanneer 'n 2-MA volg op 'n bewegende gemiddelde van al orde (soos 4), is dit bekend as 'n gesentreerde bewegende gemiddelde van orde 4. Dit is omdat die resultate is nou simmetriese. Om te sien dat dit die geval is, kan ons die 2times4-MA soos volg skryf: begin hoed amp frac Bigfrac (J J J J) frac (J J J J) Big amp frac y frac14y frac14y frac14y frac18y. Uiteindelik gaan dit nou 'n geweegde gemiddelde van waarnemings, maar dit is simmetriese. Ander kombinasies van bewegende gemiddeldes is ook moontlik. Byvoorbeeld 'n 3times3-MA word dikwels gebruik, en bestaan ​​uit 'n bewegende gemiddelde van orde 3 gevolg deur 'n ander bewegende gemiddelde van orde 3. In die algemeen, moet 'n gelyke orde MA word gevolg deur 'n nog bevel MA dit simmetriese maak. Net so moet 'n vreemde orde MA word gevolg deur 'n vreemde orde MA. Skatte van die tendens-siklus met seisoenale data Die mees algemene gebruik van gesentreer bewegende gemiddeldes is in die beraming van die tendens-siklus van seisoenale data. Oorweeg die 2times4-MA: hoed frac y frac14y frac14y frac14y frac18y. Wanneer dit toegepas word om kwartaalliks data, word elke kwartaal van die jaar gegee gelyke gewig as die eerste en laaste terme van toepassing op dieselfde kwartaal in agtereenvolgende jare. Gevolglik sal die seisoenale variasie word gemiddeld uit en die gevolglike waardes van hoed t sal min of oorblywende geen seisoenale variasie het. 'N soortgelyke effek sal verkry word met behulp van 'n 2times 8-MA of 'n 2times 12-MA. In die algemeen, 'n 2times m-MA is gelykstaande aan 'n geweegde bewegende gemiddelde van orde M1 met alle waarnemings wat gewig 1 / m, behalwe vir die eerste en laaste terme wat gewigte neem 1 / (2 miljoen). So as die seisoenale tydperk is selfs en orde m, gebruik 'n 2times m-MA aan die tendens-siklus te skat. As die seisoenale tydperk is vreemd en orde m, gebruik 'n m-MA aan die tendens siklus skat. In die besonder, kan 'n 2times 12-MA gebruik word om die tendens-siklus van maandelikse data te skat en 'n 7-MA gebruik kan word om die tendens-siklus van die daaglikse data te skat. Ander keuses vir die einde van die MA sal gewoonlik lei tot tendens-siklus skattings besmet deur die seisoenaliteit in die data. Voorbeeld 6.2 Elektriese toerusting vervaardiging Figuur 6.9 toon 'n 2times12-MA toegepas op die elektriese toerusting bestellings indeks. Let daarop dat die gladde lyn toon geen seisoenaliteit dit is byna dieselfde as die tendens-siklus word in Figuur 6.2 wat na raming met behulp van 'n veel meer gesofistikeerde metode as bewegende gemiddeldes. Enige ander keuse vir die einde van die bewegende gemiddelde (behalwe vir 24, 36, ens) sou gelei tot 'n gladde lyn wat 'n paar seisoenale skommelinge toon. plot 40 elecequip, ylab quotNew bestellings indexquot. Kol quotgrayquot, hoof quotElectrical toerusting vervaardiging (Eurogebied) quot 41 lyne 40 MA 40 elecequip, sodat 12 41. Kol quotredquot 41 Geweegde bewegende gemiddeldes Kombinasies van bewegende gemiddeldes lei tot geweegde bewegende gemiddeldes. Byvoorbeeld, die 2x4-MA hierbo bespreek is gelykstaande aan 'n geweegde 5-MA met gewigte deur frac, frac, frac, frac, frac. In die algemeen kan 'n geweegde m-MA geskryf word as hoed t som k AJ y, waar k (m-1) / 2 en die gewigte word deur 'n, kolle, AK. Dit is belangrik dat die gewigte al som tot een en dat hulle simmetriese sodat 'n aj. Die eenvoudige m-MA is 'n spesiale geval waar al die gewigte is gelyk aan 1 / m. 'N Groot voordeel van geweegde bewegende gemiddeldes is dat hulle toegee n gladder skatting van die tendens-siklus. In plaas van waarnemings betree en verlaat die berekening op volle gewig, is hul gewigte stadig toegeneem en dan stadig afgeneem wat lei tot 'n gladder kurwe. Sommige spesifieke stelle gewigte is wyd gebruik word. Sommige van hierdie word in Tabel 6.3.How bereken ek die seisoenale variasie van 'n 4-punt bewegende gemiddelde As ek 'n lys van verkope per kwartaal vir 2 jaar, sê. Van hierdie data kan ek die 4 punt bewegende gemiddeldes Gewoonlik bereken, verkope - bewegende gemiddelde (tendens) seisoenale variasie en dit sou (dws onewe getal) onewe getal maklik gewees het as ek 3 of 5 punt bewegende gemiddeldes gedoen het: Verkope. Tendens. Seisoenaal. wys meer As ek 'n lys van verkope per kwartaal vir 2 jaar, sê. Van hierdie data kan ek die 4 punt bewegende gemiddeldes Gewoonlik bereken, verkope - bewegende gemiddelde (tendens) seisoenale variasie en dit sou (dws onewe getal) Verkope maklik gewees het as ek 3 of 5 punt bewegende gemiddeldes gedoen het. Tendens. Seisoenale variasie x. a. d y. b. e z. c. f Verkope. Tendens. Seisoenale variasie x. 'n y. b Z Het ek neem net 'n 2 punt bewegende gemiddelde van die tendens om die nommers te kry in ooreenstemming Jammer, hoop jy verstaan ​​my vraag It039s 'n bietjie moeilik om te verduidelik. Beste Antwoord: As jy besef, met 'n drie punt of vyf punt bewegende gemiddelde, is jou datapunte in lyn met jou oorspronklike data. Wel, die vier punt bewegende gemiddelde sou jy 'n tendens lyn met datapunte in lyn halfpad tussen die middel-punte van jou oorspronklike data en so ek dink jy moet interpoleer tussen die bewegende gemiddelde datapunte gee. Sedert die bewegende gemiddelde datapunte eweredig gespasieer weerskante van jou oorspronklike data, behels interpolasie gemiddeld opeenvolgende punte, so ek stem saam met jou voorstel om 'n verdere twee punt bewegende gemiddelde te neem as 'n middel van die berekening van die tendens. Ek sou egter verwys na dit as interpolasie in plaas van as 'n verdere bewegende gemiddelde. John middot 7 jaar gelede Hoe bereken ek die seisoenale variasie van 'n 4-punt bewegende gemiddelde As ek 'n lys van verkope per kwartaal vir 2 jaar, sê. Van hierdie data kan ek die 4 punt bewegende gemiddeldes Gewoonlik bereken, verkope - bewegende gemiddelde (tendens) seisoenale variasie en dit sou (dws onewe getal) Verkope maklik gewees het as ek 3 of 5 punt bewegende gemiddeldes gedoen het. Tendens. Seisoenale variasie x. a. d y. b. e z. c. f Verkope. Tendens. Seisoenale variasie x. 'n y. BZ neem ek net 'n 2 punt bewegende gemiddelde van die tendens om die getalle in ooreenstemming te kry Jammer, hoop jy verstaan ​​my vraag It039s 'n bietjie moeilik om te verduidelik Voeg jou answermoving gemiddelde gemiddeld van tydreeksdata (waarnemings eweredig gespasieerde in tyd) van 'n paar agtereenvolgende tydperke. Genoem beweeg omdat dit voortdurend recomputed as nuwe data beskikbaar raak, dit vorder deur die val van die vroegste waarde en die toevoeging van die jongste waarde. Byvoorbeeld, kan die bewegende gemiddelde van ses maande verkoop word bereken deur die gemiddelde van verkope van Januarie tot Junie, dan is die gemiddeld van verkope van Februarie tot Julie dan Maart tot Augustus en so aan. Bewegende gemiddeldes (1) verminder die effek van tydelike verskille in data, (2) die verbetering van die passing van data om 'n lyn ( 'n proses genaamd smoothing) om die data in tendens duideliker wys, en (3) na vore te bring enige waarde bo of onder die tendens. As jy iets met 'n baie hoë variansie is die berekening van die beste wat jy kan in staat wees om te doen, is uit die bewegende gemiddelde. Ek wou weet wat die bewegende gemiddelde was van die data, so ek sal 'n beter begrip van hoe ons doen het. As jy probeer om uit te vind 'n paar nommers wat verander dikwels die beste wat jy kan doen is om te bereken die bewegende gemiddelde. Die beste van BusinessDictionary, daaglikse afgelewer

No comments:

Post a Comment